Telegram Group & Telegram Channel
А как же должен выглядеть правильный "AGI-роудмап"?

Напомню неформальное определение интеллекта, которого сейчас придерживаюсь:
Интеллект - это мера эффективности использования данных для приобретения новых навыков.

Это характеристика алгоритма обучения. Я уверен, что мы используем очень плохие алгоритмы - как минимум потому, что они сконструированы людьми вручную. Также, как и когда-то создание признаков вручную, создание алгоритмов должно пасть под ударом мета-лёрнинга. 

Для долгосрочного ресёрча необходим план, но не такой, какие я упоминал раньше. Это должен быть задаче-ориентированный план.

Каждый пункт в этом плане должен состоять из зафиксированных данных и тестовой задачи. Нам нужно начать с простейший постановки, в которой мы умеем обучать модель, превосходящую человека, и постепенно усложнять её следующими способами:

1) Уменьшение тренировочных данных для тестовой задачи
2) Увеличение разнообразия, количества, бесструктурности прочих данных
3) Усложнение тестовой задачи

Вариантов реализации может быть достаточно много, приведу набросок одной из возможных:

Уровень №0: Элементарный RL с нуля
Дано: 10к шагов взаимодействия со CartPole, далее тестируем

Уровень №1: RL с нуля
Дано: 100к шагов взаимодействия со Atari, далее тестируем

======= Текущие алгоритмы находятся здесь =========

Уровень №2: RL с помощью демонстраций
Дано: 100к траекторий игры среднего человека в Atari; 10к шагов взаимодействия с Atari, далее тестируем

Уровень №3: Сложный RL с помощью демонстраций
Дано: N траекторий игр людей в Starcraft; K часов игры против бота, далее тестируем

Уровень №4: Сложный RL с использованием кучи разных данных
Дано: википедия, форумы по starcraft, видео по starcraft; 1 час игры против бота, далее тестируем

Уровень №5: Сложный RL с самостоятельным поиском необходимых данных
Дано: википедия, доступ к чтению интернета на X часов; 1 час игры против бота, далее тестируем

Уровень №6: ASI
Дано: википедия, доступ к чтению интернета на X часов; Текстовый запрос с описанием того, какую задачу нужно решить; N часов на генерацию ответа, далее его проверяет система (данных для такой постановки пока нет).

Далее поступаем по вкусу. 

К сожалению, в пост не влезут все примечания и оговорки по поводу этих уровней, если вам интересно, в чём мотивация того или иного пункта, готов обсудить в комментариях. Кроме того, это лишь набросок, и по мере продвижения по шагам детали могут меняться.

Я верю в то, что существует малоразмерная параметризация обучающего алгоритма, который, если обучать с помощью meta-learning, можно продвинуть по всем этим уровням, каждый раз добиваясь superhuman-level. И если весь мир будет занят прикручиванием human-level моделек, обученных подражать людям, к прикладным задачам, за создание сверхразума придётся взяться кому-то ещё.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/245
Create:
Last Update:

А как же должен выглядеть правильный "AGI-роудмап"?

Напомню неформальное определение интеллекта, которого сейчас придерживаюсь:
Интеллект - это мера эффективности использования данных для приобретения новых навыков.

Это характеристика алгоритма обучения. Я уверен, что мы используем очень плохие алгоритмы - как минимум потому, что они сконструированы людьми вручную. Также, как и когда-то создание признаков вручную, создание алгоритмов должно пасть под ударом мета-лёрнинга. 

Для долгосрочного ресёрча необходим план, но не такой, какие я упоминал раньше. Это должен быть задаче-ориентированный план.

Каждый пункт в этом плане должен состоять из зафиксированных данных и тестовой задачи. Нам нужно начать с простейший постановки, в которой мы умеем обучать модель, превосходящую человека, и постепенно усложнять её следующими способами:

1) Уменьшение тренировочных данных для тестовой задачи
2) Увеличение разнообразия, количества, бесструктурности прочих данных
3) Усложнение тестовой задачи

Вариантов реализации может быть достаточно много, приведу набросок одной из возможных:

Уровень №0: Элементарный RL с нуля
Дано: 10к шагов взаимодействия со CartPole, далее тестируем

Уровень №1: RL с нуля
Дано: 100к шагов взаимодействия со Atari, далее тестируем

======= Текущие алгоритмы находятся здесь =========

Уровень №2: RL с помощью демонстраций
Дано: 100к траекторий игры среднего человека в Atari; 10к шагов взаимодействия с Atari, далее тестируем

Уровень №3: Сложный RL с помощью демонстраций
Дано: N траекторий игр людей в Starcraft; K часов игры против бота, далее тестируем

Уровень №4: Сложный RL с использованием кучи разных данных
Дано: википедия, форумы по starcraft, видео по starcraft; 1 час игры против бота, далее тестируем

Уровень №5: Сложный RL с самостоятельным поиском необходимых данных
Дано: википедия, доступ к чтению интернета на X часов; 1 час игры против бота, далее тестируем

Уровень №6: ASI
Дано: википедия, доступ к чтению интернета на X часов; Текстовый запрос с описанием того, какую задачу нужно решить; N часов на генерацию ответа, далее его проверяет система (данных для такой постановки пока нет).

Далее поступаем по вкусу. 

К сожалению, в пост не влезут все примечания и оговорки по поводу этих уровней, если вам интересно, в чём мотивация того или иного пункта, готов обсудить в комментариях. Кроме того, это лишь набросок, и по мере продвижения по шагам детали могут меняться.

Я верю в то, что существует малоразмерная параметризация обучающего алгоритма, который, если обучать с помощью meta-learning, можно продвинуть по всем этим уровням, каждый раз добиваясь superhuman-level. И если весь мир будет занят прикручиванием human-level моделек, обученных подражать людям, к прикладным задачам, за создание сверхразума придётся взяться кому-то ещё.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/245

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.

Telegram today rolling out an update which brings with it several new features.The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations.

Knowledge Accumulator from id


Telegram Knowledge Accumulator
FROM USA